JETIR.ORG ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR) An International Scholarly Open Access, Peer-reviewed, Refereed Journal

SET-DOMINATION IN LINE GRAPHS

Sana Aeja¹, Jyoti Singh Raghav² and D.G.Akka³

¹Department of Mathematics, Mewar University,

Kalaburagi-Karnataka.

E-mail: sanakhadeer.glb @gmail.com

²Department of Mathematics, Mewar University, Chittorgarh-Rajasthan. E-mail:jyotiprashantraghav@gmail.com

³Department of Mathematics, Alliance University, Bangalore-Karnataka. E-mail:drdgakka123@gmail.com

Abstract: In this paper, we initiate the study of set-domination in line graph L(G) of a graph G. The line graph L(G) of a graph G is the graph whose vertex set is in one-to-one correspondence with the elements of the set E such that two vertices of L(G) are adjacent if and only if they correspond to two adjacent edge of G. In this paper, many bounds of $\gamma_{sd}[L(G)]$ were obtained. Also its exact values for some standard graphs were found.

Keywords and Phrases: Line Graph, Set-domination, co-total domination, perfect domination, total domination.

Mathematics Subject Classification: AMS-05C69, 05C70, 05C76.

1. INTRODUCTION

We consider all non-trivial, simple, finite, connected and undirected graphs only as our research object. The general notation and terms are taken from [4]. Let n = |V| be the order of graph G = (V, E). The open neighbourhood of a vertex $v \in V$ is $N(v) = \{u|u, v \in E\}$ whereas its closed neighbourhood is $N[v] = N(u) \cup \{v\}$. The vertex degree can be denoted by deg(v) = |N(v)| and $\Delta(G)$ and $\delta(G)$ are the maximum and minimum degree of vertices of G.

A Line graph L(G) is the graph whose vertices relate to the edges of G and vertices of L(G) are contiguous if and provided that the comparing edges in G are neighbouring. In a graph *G*, a set $S \subseteq V(G)$ is dominating set of *G* if each $v \in V(G)$ is either in *S* or neighbouring vertex in *S*. The minimum cardinality of this set is known as domination number $\gamma(G)$. See [6].

The set of vertices that covers all the edges of *G* is called the Vertex cover in *G*. The Vertex covering number $\alpha_0(G)$ is the minimum cardinality of a vertex cover in a graph *G*. The set of edges that covers all the vertices of *G* is called the Edge cover in *G*. The Edge covering number $\alpha_1(G)$ is the minimum cardinality of an edge cover in *G*.

The maximum cardinality of independent set of vertices in *G* is called the vertex independence number denoted by $\beta_0(G)$ whereas the maximum cardinality of independent set of edges in *G* is called the Edge independence number denoted by $\beta_1(G)$. The maximum eccentricity of any vertex in the connected graph *G* is called Diameter of *G* and its denoted by *diam* (*G*).

We start by reviewing some standard fundamental definitions from the theory of domination.

A set *D* subset of vertex set of L(G) is supposed to be dominating set of L(G), if for each vertex which is not in *D* is an adjoining vertex in *D*. The domination number signified by $\gamma[L(G)]$ is the minimum cardinality of dominating set in *G*. Refer [6].

A set F of edges in a graph G is called an edge dominating set of G if each degree in E - F where E is the arrangement of edges in G is adjoining atleast one edge in F. The edge domination number $\gamma'(G)$ of a graph G is the minimum cardinality of an edge dominating set of G. The idea of Edge domination number in graphs was concentrated by S.Mitchell and S.T. Hedetniemi [10].

Let *D* be a total dominating set if each vertex *v* of *G* is adjacent to some vertex $u \neq v$ of *D*. The size of the smallest total dominating set is known as Total Domination Number denoted by $\gamma_t(G)$ [2].

In [7], Hedetniemi and Laskar introduced a connected dominating set. If any induced subgraph $\langle D \rangle$ induced by a dominating set *D* is connected in *G* is called Connected Dominating set. The minimum cardinality of a CD-set of *G* is called Connected Domination number and it is denoted by $\gamma_c(G)$.

If the induced subgraph $\langle V - D \rangle$ is disconnected then the graph is said to be a Split Dominating set and the minimum cardinality of this split dominating set is called Split Domination number. It is signified by $\gamma_s(G)$. See for details [9].

If the induced subgraph $\langle V - S \rangle$ is totally disconnected with the minimum of two vertices, then this dominating set *S* is called Strong Split Dominating set. The minimum cardinality of this set is called Strong Split Domination number $\gamma_{ss}(G)$ of *G*. Refer [9].

Comparably, we elucidate Set-Domination number in Line Graph as follows:

A dominating set is called a Set-Dominating set of a Line Graph, if for every set which is subset of $\langle V - D \rangle$, there exist a set *S* subset of dominating set which is non-empty such that subgraph of this set and *S* is connected. Furthermore, the minimum cardinality of this dominating set is called SD-set of Line graph. It is denoted by $\gamma_{sd}[L(G)]$. Refer [6] for domination sets in graphs. In [12], Sampath Kumar and PushpaLatha have presented the idea of set-domination in graphs. In this paper, we start the connection between $\gamma_{sd}[L(G)]$ with other known distinctive domination parameters, additionally its exact values of some standard graphs were found.

2. RESULTS

Presently, we give Set-Domination number of line graph for some standard graphs, which are straight forward in the accompanying proposition.

2.1 Theorem:

a) For any Path P_p with $p \ge 6$,

 $\gamma_{sd}[P_p] \leq \gamma_{ns}(G) - \Delta(G).$

b) For any Path P_p with p > 2 vertices,

$$\gamma_{sd}[P_p] = diam(G) - \gamma_{dd}(G) + 2.$$

c) For any star S_n with $p \ge 3$,

i)
$$\gamma_{sd}[S_n] = p - n$$
 where $n = 2, 3, ...$

ii)
$$\gamma_{sd}[S_n] = \alpha_o(G) = \beta_1(G) = \gamma(G) = \gamma_c(G) = \gamma_s(G) = \gamma_p(G) = i(G) = \delta(G).$$

iii)
$$\gamma_{sd}[S_n] = \gamma_{dd}(G) - \Delta(G).$$

$$iv)\gamma_{sd}[S_n] = \gamma_{cot}(G) - q(G).$$

v)
$$\gamma_{sd}[S_n] = p(G) - \gamma_r(G)$$

d) For any wheel W_n with $p \ge 4$,

$$\mathbf{i})\gamma_{sd}[W_n] = \gamma'(G)$$

ii) $\gamma_{sd}[W_n] \le \gamma_{lw}(G) \le \beta_1(G) \le \alpha_0$ $(G) \le \Delta'(G) \le q(G)$.

e) For any Cycle C_p with $p \ge 3$,

i)
$$\gamma_{sd}[C_p] = \gamma(G) = \gamma_{lw}(G).$$

ii) $\gamma_{sd}[\mathcal{C}_p] \leq \gamma_{cot}(G) \leq \alpha_1(G).$

iii)
$$\gamma_{sd}[\mathcal{C}_p] \ge \frac{n}{\Delta + 1}$$
 where n is order of graph.

f) For any Fan graph F_n , $n \ge 3$,

i)
$$\gamma_{sd}[F_n] = \left\lfloor \frac{n}{2} \right\rfloor$$

ii) $\gamma_{sd}[F_n] = \frac{\beta_o(G)}{2}$

In the accompanying theorem, we build up the upper bounds for $\gamma_{sd}[L(G)]$ in terms of edges and independent domination of *G*.

2.2 Theorem: For any connected (p, q) graph G,

$$\gamma_{sd}[L(G)] \ge \left\lfloor \frac{q-i(G)}{4} \right\rfloor$$
 where $G \neq K_{1,p}$ for $p \ge 10$.

Proof:Let $E = \{e_1, e_2, e_3, \dots, e_n\} \subset E(G)$ such that E(G) = V[L(G)].Suppose $D = \{v_1, v_2, v_3, \dots, v_m\} \subset V(G)$ and assume N[D] = V(G). Then D is a minimal dominating set of G. If $\forall v_i \in D$ and does not incident with any $e_i \in E(G)$ then D is an independent dominating set of G.

Now $A = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertex set of L(G) corresponding to the edges of E in L(G) such that A = V[L(G)]. Now we consider a subset $A_1 \subset A$ such that $N[A_1] = V[L(G)]$. Clearly A_1 is a dominating set of L(G). Suppose there exists a subset $B \subseteq V[L(G)] - A_1$ and $A'_1 \subset A_1$ where $A'_1, B \neq \emptyset$ and $< A'_1 \cup B >$ is connected. Hence A_1 is a set-dominating set of L(G). Since |E| = q and we have $|A_1| \ge \frac{|E| - |D|}{4}$ gives $\gamma_{sd}[L(G)] \ge \left|\frac{q-i(G)}{4}\right|$

Suppose $G = K_{1,p}$ for $p \ge 10$. Then $L(K_{1,p}) = K_p$, Since for any star $K_{1,p}$, q = p - 1 and i(G) = 1 which gives $\left\lfloor \frac{q - i(G)}{4} \right\rfloor \ge 2$ and also $|A_1| = 1$ which gives $\gamma_{sd}[K_{1,p}] \le \left\lfloor \frac{q - i(G)}{4} \right\rfloor$

Hence $G \neq K_{1,p}$ with $p \ge 10$.

The accompanying proposition relates total domination and weak domination with set domination in line graph.

2.3 Theorem: For any connected (p, q) graph G,

$$\gamma_{sd}[L(G)] \leq \gamma_t(G) + \gamma_w(G) - 1.$$

Proof: Suppose $D = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G), 1 \le i \le n$ and N[D] = V(G). Then D is a minimal dominating set of G. Suppose < D > has adjacent vertex. Then D itself is a total dominating set of G. Or else there exists an isolated vertex v of zero degree $v \in \{V(G) - D\}$ and if $<\{D\} \cup \{v\} >$ has adjacent vertex then $\{D\} \cup \{v\}$ forms a total dominating set of G.

Further, Let $F = \{v_1, v_2, v_3, \dots, v_k\} \subseteq V(G)$ be the set of vertices with $\deg(v_j) \ge 1, 1 \le j \le k$. Suppose there exist a vertex set $D_1 \subseteq F$ with $N[D_1] = V(G)$ and if $|\deg(x) - \deg(y)| \le 1, \forall x \in [V(G)] - D_1 \forall y \in D_1$. Then D_1 forms a weak dominating set in G.

Suppose $H = \{v_1, v_2, v_3, \dots, v_n\} = V[L(G)]$. Let D'_1 be the minimal dominating set of L(G) such that $N[D'_1] = V[L(G)]$. Then D'_1 forms a γ_{sd} – set of L(G). Then $|D'_1| = \gamma_{sd}[L(G)]$.

Hence $|D'_1| \le |\{D\} \cup \{v\}| + |D_1| - 1$ gives $\gamma_{sd}[L(G)] \le \gamma_t(G) + \gamma_w(G) - 1$.

The accompanying proposition shows the connection between set-domination of line graph and domination number of graph.

2.4 Theorem: For any connected (p, q) graph G,

$$\gamma_{sd}[L(G)] \leq \gamma(G) + 3.$$

Proof: Let $V = \{v_1, v_2, v_3, \dots, v_m\} \subseteq V(G)$ be the set of all vertices in G.Assume there exists a minimal set of vertices $D = \{v_1, v_2, v_3, \dots, v_k\} \subseteq V(G)$ such that N[D] = V(G). Then D forms a minimal dominating set of G. Now we consider $D_1 = \{u_1, u_2, u_3, \dots, u_i\}$ where $m \ge k \ge i$ be the minimal set of L(G) such that $N[D_1] = V[L(G)]$. Let $P \subseteq V[L(G)] - D_1$ and $Q \subseteq D_1$ where $P, Q \ne \emptyset$ and $\langle Q \cup P \rangle$ is connected. Then D_1 is a set dominating set of L(G). Hence $|D_1| \le |D| + 3$.

It follows $\gamma_{sd}[L(G)] \leq \gamma(G) + 3$.

The accompanying proposition correlate perfect domination number of graph and set domination of line graph.

2.5 Theorem : For any connected (p, q) graph G,

$$\gamma_{sd}[L(G)] \leq \gamma_p(G) + 1$$

Proof: Suppose $H = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertex set of *G*. Now assume there exist $A_1 \subset A$ such that each vertex of $\langle A - A_1 \rangle$ is adjacent to minimum one vertex of A_1 . Then A_1 is a minimal dominating set of *G*. If every vertex of A_1 is adjacent to exactly one vertex of $\langle A - A_1 \rangle$, then A_1 is a $\gamma_p - set$ of *G*. Now we consider $D_1 = \{v_1, v_2, v_3, \dots, v_m\}$ be the vertex set of L(G) corresponding to the edges of *E* in L(G) such that $D_1 = V[L(G)]$. Let a subset $D'_1 \subset D_1$ such that $N[D_1] = V[L(G)]$. Clearly D'_1 is a dominating set of L(G). Suppose there exists a subset $S \subseteq V[L(G)] - D'_1$ and $T \subset D'_1$ where $S, T \neq \emptyset$ and $\langle S \cup T \rangle$ is connected. Then D'_1 is a set-dominating set of L(G) such that $|D'_1| = \gamma_{sd}[L(G)]$ which gives $|D'_1| \leq |A_1| + 1$.

Hence $\gamma_{sd}[L(G)] \leq \gamma_p(G) + 1$.

The next proposition gives an upper bound of $\gamma_{sd}[L(T)]$ of a tree of fixed order and diameter with domination number of a tree.

2.6 Theorem : For any tree *T*, with p > 2 vertices and $diam \ge 4$ then

$$\gamma_{sd}[L(T)]+1\leq \gamma(T).$$

Proof: Let $S = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(T)$ be the set of vertices with $deg(v_i) \ge 2, \forall v_i \in S, 1 \le i \le n$. Further, let there exists a set $S_1 \subseteq S$ of vertices with $diam(u, v) \ge 4 \forall u, v \in S$, which covers all the vertices in *T*, clearly S_1 forms a dominating set of *T*. Otherwise, if diam(u, v) < 3, then there exists at least one vertex $x \notin S_1$ such that $S' = S_1 \cup \{x\}$ forms a minimal $\gamma - set$ of *T*. Now suppose D_1 be a $\gamma_{sd} - set$ of tree *T* and assume $V = \{v_1, v_2, v_3, \dots, v_n\} = V(T)$ such that $P \subseteq D_1$ and $Q \subseteq V - D_1$ where $P, Q \neq \emptyset$ and $P \cup Q > is$ connected. Then $|D_1| = \gamma_{sd}(T)$. Hence $|D_1| \le |S'|$ which gives $\gamma_{sd}(T) + 1 \le \gamma(T)$.

Presently we build up relationship among edges and maximum degree of G with set-domination in line graph.

2.7 Theorem : For any connected (p, q) graph G,

$$\gamma_{sd}[L(G)] \leq q(G) - \Delta'(G) \forall p \geq 3.$$

Proof: Let $\{e_1, e_2, e_3, \dots, e_n\} = E(G)$. For any graph *G*, there exists at least one edge $e \in E(G)$ with $\deg(e) = \Delta'(G)$. Suppose |E(G)| = q. Further in L(G), suppose $D' = \{u_1, u_2, u_3, \dots, u_n\} \subseteq V[L(G)]$ be the set of vertices such that N[D'] = V[L(G)].Let $F \subseteq V[L(G) - D'$ and $H \subseteq D'$ where $H, F \neq \emptyset$ and $\langle F \cup H \rangle$ is connected. Then $|D'| = \gamma_{sd}[L(G)]$. It follows $|D'| \leq |E(G)| - |\deg(e)|$.

Hence $\gamma_{sd}[L(G)] \leq q - \Delta'(G)$.

2.8 Theorem: For any connected (p, q) graph G,

$$\gamma_{sd}[L(G)] \leq \gamma_c(G) + 2.$$

Proof:Since $\gamma(G) \leq \gamma_c(G)$, henceby theorem 2.4, the result follows.

Hence $\gamma_{sd}[L(G)] \leq \gamma_c(G) + 2$.

The accompanying proposition correlates between set-domination in line graph and connected domination in graph.

2.9 Theorem: For any connected (p, q) graph G,

$$\gamma_{sd}[L(G)] \leq \gamma_{ss}(G), G \neq \frac{K_p}{p} \geq 2.$$

Proof: Let $D = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the set of non-end vertices such that N[D] = V(G). Then D is minimal dominating set of G.

Suppose $G = K_p$, $p \ge 2$. Then by the definition of γ_{ss} of G, the strong split domination does not exist. Hence there exist a minimal dominating set of D such that for every $v_i \in V - D$, with $\deg(v_i) = 0$ and $\langle V - D \rangle$ has atleast two vertices. Then D is a $\gamma_{ss} - set$ of G. Otherwise if there exists a vertex set $H = \{v_1, v_2, v_3, \dots, v_k\}$ and every vertex of H is incident to atleast one edge, where $H \in V - D$.

Now consider $H_1 \subseteq H \forall v_i \in H - H_1 > \deg(v_i) = 0$. Then $\langle V - \{D \cup H_1\} >$ has a set with atleast two isolated vertices. Clearly $\{D \cup H_1\}$ is a $\gamma_{ss} - set$ of G. Further, let $D_1 = \{u_1, u_2, u_3, \dots, u_i\} \subseteq V[L(G)]$ be the minimal set of L(G) and every vertex of $V[L(G)] - D_1$ is adjacent to atleast one vertex of D_1 . Suppose $P \subseteq$ $V[L(G)] - D_1$ and $Q \subseteq D_1$ where $P, Q \neq \emptyset$ and $\langle Q \cup P \rangle$ is connected. Then D_1 is a sd-set of L(G) which implies that $|D_1| \leq |\{D \cup H_1\}|$.

Thus $\gamma_{sd}[L(G)] \leq \gamma_{ss}(G)$.

In the next theorem, we establish relationship between co-total domination, minimum vertex degree of a graph and set-domination of line graph.

2.10 Theorem: For any connected (p, q) graph G,

$$\gamma_{sd}[L(G)] \leq \gamma_{cot}(G) + \delta(G) + 1.$$

Proof: Let $A = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices in G and B = V(G) - A. Suppose there exists a subset $B_1 \subset B$ and if $A \cap B_1 = \emptyset$ or $u, u \in V(G) - A$ such that $N[A \cup B_1] = V(G)$. Then $A \cup B_1$ is a dominating set of G. Further if $\langle V(G) - \{A \cup B_1\} \rangle$ has no isolates, then $\{A \cup B_1\}$ is a $\gamma_{cot} - set$ of G. Otherwise select $B_2 \subset V(G) - \{A \cup B_1\}$ so that $\langle V(G) - \{A \cup B_1 \cup B_2\} \rangle$ has no isolates. Hence $\{A \cup B_1 \cup B_2\}$ is a $\gamma_{cot} - set$ of G. Let there exists a vertex v of minimum degree $\delta(G)$.

Now assume $E = \{e_1, e_2, e_3, \dots, e_m\} = E(G)$. Then $V[L(G)] = \{v_1, v_2, v_3, \dots, v_m\}$ be the set of vertices corresponding to the set *E*. Suppose $D \subset V[L(G)]$ and if $\forall v_i \in D$ is adjacent to at least one vertex of V[L(G)] - D. Then *D* itself is a minimal dominating set of L(G). If there exists a subset $D_1 \subset D$ and $D_2 \subset$ $V[L(G)] - D_1$ so that $D_1, D_2 \neq \emptyset$ such that $\langle D_1 \cup D_2 \rangle$ is connected. Then *D* is a γ_{sd} – set of L(G). Now with respect to $\{A \cup B_1 \cup B_2\}$, we have $|D| \leq |\{A \cup B_1 \cup B_2\}| + \delta(G) + 1$, which gives $\gamma_{sd}[L(G)] \leq \gamma_{cot}(G) + \delta(G) + 1$.

The following theorem shows relationship between $\gamma_s(G)$, $\beta_0(G)$ and $\gamma_{sd}[L(G)]$.

2.11 Theorem: For any connected (p, q) graph G,

$$\gamma_{sd}[L(G)] \leq \gamma_s(G) + \beta_0(G).$$

Proof:Let $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ if $N(v_i) \cap N(v_j) = \{u\}, 1 \le i \le n$ and $1 \le j \le n$. Then A is a maximal independent vertex set of G.Hence $|A| = \beta_0(G)$. Further consider a minimum set of vertices D_1 such that $N[D_1] = V(G)$ and $\langle V - D_1 \rangle$ is disconnected. It follows that D_1 is a split dominating set of G. Otherwise there exists at least one vertex $\{u\} \in V(G) - D_1$ such that $\langle V(G) - D_1 \cup \{u\}$ has more than one component. Hence $D_1 \cup \{u\}$ forms a minimal $\gamma_s - set$ of G.

Suppose $B \subset V[L(G)]$ where $\forall v_i \in B$ are the edges of G which are incident to $\forall v_j \in A$. Now there exists a subset $B_1 \subset B$ and if $N[B_1] = V[L(G)]$. Hence B_1 is a dominating set of L(G). Suppose there exists $B_2 \subseteq B_1$ and $B_3 \subset V[L(G)] - \{B_1\}$. If $\langle B_2 \cup B_3 \rangle$ is connected, then B_1 is a $\gamma_{sd} - set$ of L(G). Hence $|B_1| \leq |D_1 \cup \{u\}| + |A|$ which gives $\gamma_{sd}[L(G)] \leq \gamma_s(G) + \beta_0(G)$

3. REFERENCES

[1]. Allan R.B and Laskar R, "On domination and independent domination number of a graph", *Discrete Mathematics*, Vol-23, 1978, 73-76.

[2]. Cockayne E.J, Dawes R.M and Hedetniemi S.T, "Total domination in graphs", *Networks*, Vol-10, 1980, 211-219.

[3]. Cocakyne E.J., Hartnell B.L., Hedetniemi S.T. and Laskar R, "Perfect domination in graphs", *Journal of Combinatorics, Information & System sciences*, Vol-18(1993),136-148.

[4]. Harary F., "Graph theory", Adison-wesley, Reading mass, 1974.

[5]. Haynes T.W., Hedetniemi S.T. and Slater P.J., "Domination in graphs: Advanced topics", *Marcel Decker, New York*, 1998.

[6].Haynes T, Hedetniemi S.T. and Slater P.J., "Fundamentals of domination ingraphs", Marcel Decker, New York, 1998.

[7]. HedetniemiS.T.andLaskar R.C., "Connected domination in graphs", *Graph theory and Combinatorics, Cambridge (Academic press)*, London 1948, 209-218.

[8]. JayaramS.R(1997), "Line domination in graphs", Graph Combinatorics357-363.

[9]. Kulli V.R, "Theory of domination in graphs", Viswa international publications, India-2010.

[10]. Mitchell S, Hedetniemi S.T., "Edge domination in trees", CongressusNumerantium 19(1977)489-509.

[11]. Muddebihal M.H and BaburaoGeetadevi, "Weak line domination in graph theory" International Journal of Research and analytical Reviews, Vol-6, 2019, 129-133.

[12]. Sampath Kumar E, PushpaLatha L, "Set-domination in graphs", Journal of graph theory/Vol-18, Aug-1994, Issue-5.

