SET-DOMINATION IN LINE GRAPHS

Sana Aeja ${ }^{1}$,Jyoti Singh Raghav ${ }^{2}$ and D.G.Akka ${ }^{3}$

Abstract

In this paper, we initiate the study of set-domination in line graph L(G) of a graph G.The line graph L(G) of a graph G is the graph whose vertex set is in one-to-one correspondence with the elements of the set E such that two vertices of $L(G)$ are adjacent if and only if they correspond to two adjacent edge of G. In this paper, many bounds of $\gamma_{s d}[\mathrm{~L}(\mathrm{G})]$ were obtained. Also its exact values for some standard graphs were found.

Keywords and Phrases: Line Graph, Set-domination, co-total domination, perfect domination, total domination.

Mathematics Subject Classification: AMS-05C69, 05C70, 05C76.

1. INTRODUCTION

We consider all non-trivial, simple, finite, connected and undirected graphs only as our research object. The general notation and terms are taken from [4]. Let $n=|V|$ be the order of graph $G=(V, E)$. The open neighbourhood of a vertex $v \in V$ is $N(v)=\{u \mid u, v \in E\}$ whereas its closed neighbourhood is $N[v]=N(u) \cup\{v\}$. The vertex degree can be denoted by $\operatorname{deg}(v)=|N(v)|$ and $\Delta(G)$ and $\delta(G)$ are the maximum and minimum degree of vertices of G.

A Line graph $L(G)$ is the graph whose vertices relate to the edges of G and vertices of $L(G)$ are contiguous if and provided that the comparing edges in G are neighbouring.

In a graph G, a set $S \subseteq V(G)$ is dominating set of G if each $v \in V(G)$ is either in S or neighbouring vertex in S.The minimum cardinality of this set is known as domination number $\gamma(G)$. See [6].

The set of vertices that covers all the edges of G is called the Vertex cover in G. The Vertex covering number $\alpha_{0}(G)$ is the minimum cardinality of a vertex cover in a graph G. The set of edges that covers all the vertices of G is called the Edge cover in G. The Edge covering number $\alpha_{1}(G)$ is the minimum cardinality of an edge cover in G.

The maximum cardinality of independent set of vertices in G is called the vertex independence number denoted by $\beta_{0}(G)$ whereas the maximum cardinality of independent set of edges in G is called the Edge independence number denoted by $\beta_{1}(G)$.The maximum eccentricity of any vertex in the connected graph G is called Diameter of G and its denoted by diam (G).

We start by reviewing some standard fundamental definitions from the theory of domination.

A set D subset of vertex set of $L(G)$ is supposed to be dominating set of $L(G)$, if for each vertex which is not in D is an adjoining vertex in D. The domination number signified by $\gamma[L(G)]$ is the minimum cardinality of dominating set in G. Refer [6].

A set F of edges in a graph G is called an edge dominating set of G if each degree in $E-F$ where E is the arrangement of edges in G is adjoining atleast one edge in F . The edge domination number $\gamma^{\prime}(G)$ of a graph G is the minimum cardinality of an edge dominating set of G. The idea of Edge domination number in graphs was concentrated by S.Mitchell and S.T. Hedetniemi [10].

Let D be a total dominating set if each vertex v of G is adjacent to some vertex $u \neq v$ of D.The size of the smallest total dominating set is known as Total Domination Number denoted by $\gamma_{t}(G)$ [2].

In [7], Hedetniemi and Laskar introduced a connected dominating set. If any induced subgraph $<D>$ induced by a dominating set D is connected in G is called Connected Dominating set. The minimum cardinality of a CD-set of G is called Connected Domination number and it is denoted by $\gamma_{c}(G)$.

If the induced subgraph $<V-D>$ is disconnected then the graph is said to be a Split Dominating set and the minimum cardinality of this split dominating set is called Split Domination number. It is signified by $\gamma_{s}(G)$. See for details [9].

If the induced subgraph $<V-S>$ is totally disconnected with the minimum of two vertices, then this dominating set S is called Strong Split Dominating set. The minimum cardinality of this set is called Strong Split Domination number $\gamma_{S S}(G)$ of G. Refer [9].

Comparably, we elucidate Set-Domination number in Line Graph as follows:

A dominating set is called a Set-Dominating set of a Line Graph, if for every set which is subset of $<V-$ $D>$, there exist a set S subset of dominating set which is non-empty such that subgraph of this set and S is connected. Furthermore, the minimum cardinality of this dominating set is called SD-set of Line graph. It is denoted by $\gamma_{s d}[L(G)]$. Refer [6] for domination sets in graphs.

In [12], Sampath Kumar and PushpaLatha have presented the idea of set-domination in graphs. In this paper, we start the connection between $\gamma_{s d}[L(G)]$ with other known distinctive domination parameters, additionally its exact values of some standard graphs were found.

2. RESULTS

Presently, we give Set-Domination number of line graph for some standard graphs, which are straight forward in the accompanying proposition.

2.1 Theorem:

a) For any Path P_{p} with $p \geq 6$,

$$
\gamma_{s d}\left[P_{p}\right] \leq \gamma_{n s}(G)-\Delta(G) .
$$

b) For any Path P_{p}, with $p>2$ vertices,

$$
\gamma_{s d}\left[P_{p}\right]=\operatorname{diam}(G)-\gamma_{d d}(G)+2 .
$$

c) For any star S_{n} with $p \geq 3$,
i) $\gamma_{s d}\left[S_{n}\right]=p-n$ where $n=2,3, \ldots$
ii) $\gamma_{s d}\left[S_{n}\right]=\alpha_{o}(G)=\beta_{1}(G)=\gamma(G)=\gamma_{c}(G)=\gamma_{s}(G)=\gamma_{p}(G)=i(G)=\delta(G)$.
iii) $\gamma_{s d}\left[S_{n}\right]=\gamma_{d d}(G)-\Delta(G)$.
iv) $\gamma_{s d}\left[S_{n}\right]=\gamma_{c o t}(G)-q(G)$.
v) $\gamma_{s d}\left[S_{n}\right]=p(G)-\gamma_{r}(G)$.
d) For any wheel W_{n} with $p \geq 4$,
i) $\gamma_{s d}\left[W_{n}\right]=\gamma^{\prime}(G)$.
ii) $\gamma_{s d}\left[W_{n}\right] \leq \gamma_{l w}(G) \leq \beta_{1}(G) \leq \propto_{o}(G) \leq \Delta^{\prime}(G) \leq q(G)$.
e) For any Cycle C_{p} with $p \geq 3$,
i) $\gamma_{s d}\left[C_{p}\right]=\gamma(G)=\gamma_{l w}(G)$.
ii) $\gamma_{s d}\left[C_{p}\right] \leq \gamma_{c o t}(G) \leq \alpha_{1}(G)$.
iii) $\gamma_{s d}\left[C_{p}\right] \geq \frac{n}{\Delta+1}$ where n is order of graph.
f) For any Fan graph $F_{n}, n \geq 3$,
i) $\gamma_{s d}\left[F_{n}\right]=\left\lfloor\frac{n}{2}\right\rfloor$
ii) $\gamma_{s d}\left[F_{n}\right]=\frac{\beta_{o}(G)}{2}$.

In the accompanying theorem, we build up the upper bounds for $\gamma_{s d}[L(G)]$ in terms of edges and independent domination of G.

2.2 Theorem: For any connected $(\boldsymbol{p}, \boldsymbol{q}) \operatorname{graph} \boldsymbol{G}$,

$$
\gamma_{s d}[L(G)] \geq\left\lfloor\frac{q-i(G)}{4}\right\rfloor \text { where } G \neq K_{1, p} \text { for } p \geq 10
$$

Proof:Let $E=\left\{e_{1}, e_{2}, e_{3}, \ldots . . e_{n}\right\} \subset E(G)$ such that $E(G)=V[L(G)]$.Suppose $D=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{m}\right\} \subset$ $V(G)$ and assume $N[D]=V(G)$. Then D is a minimal dominating set of G. If $\forall v_{i} \in D$ and does not incident with any $e_{i} \in E(G)$ then D is an independent dominating set of G.

Now $A=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{n}\right\}$ be the vertex set of $L(G)$ corresponding to the edges of E in $L(G)$ such that $A=$ $V[L(G)]$. Now we consider a subset $A_{1} \subset A$ such that $N\left[A_{1}\right]=V[L(G)]$. Clearly A_{1} is a dominating set of $L(G)$. Suppose there exists a subset $B \subseteq V[L(G)]-A_{1}$ and $A_{1}^{\prime} \subset A_{1}$ where $A_{1}^{\prime}, B \neq \emptyset$ and $<A_{1}^{\prime} \cup B>$ is connected. Hence A_{1} is a set-dominating set of $L(G)$. Since $|E|=q$ and we have $\left|A_{1}\right| \geq \frac{|E|-|D|}{4}$ gives $\gamma_{s d}[L(G)] \geq\left\lfloor\frac{q-i(G)}{4}\right\rfloor$

Suppose $G=K_{1, p}$ for $p \geq 10$. Then $L\left(K_{1, p}\right)=K_{p}$, Since for any star $K_{1, p}, q=p-1$ and $i(G)=1$ which gives $\left\lfloor\frac{q-i(G)}{4}\right\rfloor \geq 2$ and also $\left|A_{1}\right|=1$ which gives $\gamma_{s d}\left[K_{1, p}\right] \leq\left\lfloor\frac{q-i(G)}{4}\right\rfloor$

Hence $G \neq K_{1, p}$ with $p \geq 10$.

The accompanying proposition relates total domination and weak domination with set domination in line graph.

2.3 Theorem: For any connected (p, q) graph G,

$$
\gamma_{s d}[L(G)] \leq \gamma_{t}(G)+\gamma_{w}(G)-1
$$

Proof: Suppose $D=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{n}\right\} \subseteq V(G), 1 \leq i \leq n$ and $N[D]=V(G)$.Then D is a minimal dominating set of G. Suppose $<D>$ has adjacent vertex. Then D itself is a total dominating set of G. Or else there exists an isolated vertex v of zero degree $v \in\{V(G)-D\}$ and if $<\{D\} \cup\{v\}>$ has adjacent vertex then $\{D\} \cup\{v\}$ forms a total dominating set of G.

Further, Let $F=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots v_{k}\right\} \subseteq V(G)$ be the set of vertices with $\operatorname{deg}\left(v_{j}\right) \geq 1,1 \leq j \leq k$.Suppose there exist a vertex set $D_{1} \subseteq F$ with $N\left[D_{1}\right]=V(G)$ and if $|\operatorname{deg}(x)-\operatorname{deg}(y)| \leq 1, \forall x \in[V(G)]-D_{1} \forall y \in D_{1}$. Then D_{1} forms a weak dominating set in G.

Suppose $H=\left\{v_{1}, v_{2}, v_{3}, \ldots . . v_{n}\right\}=V[L(G)]$. Let D_{1}^{\prime} be the minimal dominating set of $L(G)$ such that $N\left[D_{1}^{\prime}\right]=V[L(G)]$. Then D_{1}^{\prime} forms a $\gamma_{s d}-\operatorname{set}$ of $L(G)$.Then $\left|D_{1}^{\prime}\right|=\gamma_{s d}[L(G)]$.

Hence $\left|D_{1}^{\prime}\right| \leq|\{D\} \cup\{v\}|+\left|D_{1}\right|-1$ gives $\gamma_{s d}[L(G)] \leq \gamma_{t}(G)+\gamma_{w}(G)-1$.

The accompanying proposition shows the connection between set-domination of line graph and domination number of graph.

2.4 Theorem: For any connected $(p, q) \operatorname{graph} G$,

$$
\gamma_{s d}[L(G)] \leq \gamma(G)+3
$$

Proof: Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{m}\right\} \subseteq V(G)$ be the set of all vertices in G.Assume there exists a minimal set of vertices $D=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{k}\right\} \subseteq V(G)$ such that $N[D]=V(G)$.Then D forms a minimal dominating set of G. Now we consider $D_{1}=\left\{u_{1}, u_{2}, u_{3}, \ldots . . u_{i}\right\}$ where $m \geq k \geq i$ be the minimal set of $L(G)$ such that $N\left[D_{1}\right]=V[L(G)]$. Let $P \subseteq V[L(G)]-D_{1}$ and $Q \subseteq D_{1}$ where $P, Q \neq \emptyset$ and $\left\langle Q \cup P>\right.$ is connected. Then D_{1} is a set dominating set of $L(G)$. Hence $\left|D_{1}\right| \leq|D|+3$.

It follows $\gamma_{s d}[L(G)] \leq \gamma(G)+3$.

The accompanying proposition correlate perfect domination number of graph and set domination of line graph.

2.5 Theorem : For any connected (p, q) graph G,

$$
\gamma_{s d}[L(G)] \leq \gamma_{p}(G)+1
$$

Proof: Suppose $H=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{n}\right\}$ be the vertex set of G. Now assume there exist $A_{1} \subset A$ such that each vertex of $\left\langle A-A_{1}\right\rangle$ is adjacent to minimum one vertex of A_{1}. Then A_{1} is a minimal dominating set of G. If every vertex of A_{1} is adjacent to exactly one vertex of $\left\langle A-A_{1}\right\rangle$, then A_{1} is a $\gamma_{p}-$ set of G. Now we consider $D_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{m}\right\}$ be the vertex set of $L(G)$ corresponding to the edges of E in $L(G)$ such that $D_{1}=V[L(G)]$. Let a subset $D_{1}^{\prime} \subset D_{1}$ such that $N\left[D_{1}\right]=V[L(G)]$. Clearly D_{1}^{\prime} is a dominating set of $L(G)$. Suppose there exists a subset $S \subseteq V[L(G)]-D_{1}^{\prime}$ and $T \subset D_{1}^{\prime}$ where $S, T \neq \varnothing$ and $\langle S \cup T>$ is connected. Then D_{1}^{\prime} is a set-dominating set of $L(G)$ such that $\left|D_{1}^{\prime}\right|=\gamma_{s d}[L(G)]$ which gives $\left|D_{1}^{\prime}\right| \leq\left|A_{1}\right|+1$.

Hence $\gamma_{s d}[L(G)] \leq \gamma_{p}(G)+1$.

The next proposition gives an upper bound of $\gamma_{s d}[L(T)]$ of a tree of fixed order and diameter with domination number of a tree.

2.6 Theorem : For any tree T, with $p>2$ vertices and diam ≥ 4 then

$$
\gamma_{s d}[L(T)]+1 \leq \gamma(T) .
$$

Proof: Let $S=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{n}\right\} \subseteq V(T)$ be the set of vertices with $\operatorname{deg}\left(v_{i}\right) \geq 2, \forall v_{i} \in S, 1 \leq i \leq n$. Further, let there exists a set $S_{1} \subseteq S$ of vertices with $\operatorname{diam}(u, v) \geq 4 \forall u, v \in S$, which covers all the vertices in T, clearly S_{1} forms a dominating set of T. Otherwise, if $\operatorname{diam}(u, v)<3$, then there exists atleast one vertex $x \notin S_{1}$ such that $S^{\prime}=S_{1} \cup\{x\}$ forms a minimal $\gamma-$ set of T. Now suppose D_{1} be a $\gamma_{s d}-$ set of tree T and assume $V=\left\{v_{1}, v_{2}, v_{3}, \ldots . . v_{n}\right\}=V(T)$ such that $P \subseteq D_{1}$ and $Q \subseteq V-D_{1}$ where $P, Q \neq \emptyset$ and $\langle P \cup Q>$ is connected. Then $\left|D_{1}\right|=\gamma_{s d}(T)$. Hence $\left|D_{1}\right| \leq\left|S^{\prime}\right|$ which gives $\gamma_{s d}(T)+1 \leq \gamma(T)$.

Presently we build up relationship among edges and maximum degree of G with set-domination in line graph.

2.7 Theorem : For any connected ($\boldsymbol{p}, \boldsymbol{q}$) graph \boldsymbol{G},

$$
\gamma_{s d}[\boldsymbol{L}(\boldsymbol{G})] \leq \boldsymbol{q}(\boldsymbol{G})-\Delta^{\prime}(\boldsymbol{G}) \forall \boldsymbol{p} \geq 3 .
$$

Proof: Let $\left\{e_{1}, e_{2}, e_{3}, \ldots . e_{n}\right\}=E(G)$. For any graph G, there exists atleast one edge $e \in E(G)$ with $\operatorname{deg}(e)=\Delta^{\prime}(G)$. Suppose $|E(G)|=q$. Further in $L(G)$, suppose $D^{\prime}=\left\{u_{1}, u_{2}, u_{3}, \ldots . u_{n}\right\} \subseteq V[L(G)]$ be the set of vertices such that $N\left[D^{\prime}\right]=V[L(G)] \cdot \operatorname{Let} F \subseteq V\left[L(G)-D^{\prime}\right.$ and $H \subseteq D^{\prime}$ where $H, F \neq \emptyset$ and $<F \cup H>$ is connected. Then $\left|D^{\prime}\right|=\gamma_{s d}[L(G)]$. It follows $\left|D^{\prime}\right| \leq|E(G)|-|\operatorname{deg}(e)|$.

Hence $\gamma_{s d}[L(G)] \leq q-\Delta^{\prime}(G)$.

2.8 Theorem: For any connected $(p, q) \operatorname{graph} G$,

$$
\gamma_{s d}[L(G)] \leq \gamma_{c}(G)+2
$$

Proof:Since $\gamma(G) \leq \gamma_{c}(G)$,henceby theorem 2.4, the result follows.

Hence $\gamma_{s d}[L(G)] \leq \gamma_{c}(G)+2$.

The accompanying propostion correlates between set-domination in line graph and connected domination in graph.

2.9 Theorem: For any connected $(p, q) \operatorname{graph} G$,

$$
\gamma_{s d}[L(G)] \leq \gamma_{s s}(G), G \neq K_{p,} p \geq 2
$$

Proof: Let $D=\left\{v_{1}, v_{2}, v_{3}, \ldots . . v_{n}\right\} \subseteq V(G)$ be the set of non-end vertices such that $N[D]=V(G)$.Then D is minimal dominating set of G.

Suppose $G=K_{p}, p \geq 2$. Then by the definition of $\gamma_{s s}$ of G, the strong split domination does not exist. Hence there exist a minimal dominating set of D such that for every $v_{i} \in V-D$, with $\operatorname{deg}\left(v_{i}\right)=0$ and $<V-$ $D>$ has atleast two vertices. Then D is a $\gamma_{s s}-$ set of G. Otherwise if there exists a vertex set $H=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{k}\right\}$ and every vertex of H is incident to atleast one edge, where $H \in V-D$.

Now consider $H_{1} \subseteq H \forall v_{i} \in<H-H_{1}>, \operatorname{deg}\left(v_{i}\right)=0$. Then $<V-\left\{D \cup H_{1}\right\}>$ has a set with atleast two isolated vertices. Clearly $\left\{D \cup H_{1}\right\}$ is a $\gamma_{s s}-$ set of G. Further, let $D_{1}=\left\{u_{1}, u_{2}, u_{3}, \ldots . u_{i}\right\} \subseteq V[L(G)]$ be the minimal set of $L(G)$ and every vertex of $V[L(G)]-D_{1}$ is adjacent to atleast one vertex of D_{1}. Suppose $P \subseteq$ $V[L(G)]-D_{1}$ and $Q \subseteq D_{1}$ where $P, Q \neq \emptyset$ and $<Q \cup P>$ is connected. Then D_{1} is a sd-set of $L(G)$ which implies that $\left|D_{1}\right| \leq\left|\left\{D \cup H_{1}\right\}\right|$.

Thus $\gamma_{s d}[L(G)] \leq \gamma_{s s}(G)$.

In the next theorem, we establish relationship between co-total domination, minimum vertex degree of a graph and set-domination of line graph.

2.10 Theorem: For any connected (p, q) graph G,

$$
\gamma_{s d}[L(G)] \leq \gamma_{c o t}(G)+\delta(G)+1 .
$$

Proof: Let $A=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{n}\right\}$ be the set of vertices in G and $B=V(G)-A$. Suppose there exists a subset $B_{1} \subset B$ and if $A \cap B_{1}=\emptyset$ or $u, u \in V(G)-A$ such that $N\left[A \cup B_{1}\right]=V(G)$. Then $A \cup B_{1}$ is a dominating set of G. Further if $<V(G)-\left\{A \cup B_{1}\right\}>$ has no isolates, then $\left\{A \cup B_{1}\right\}$ is a $\gamma_{c o t}-$ set of G. Otherwise select $B_{2} \subset V(G)-\left\{A \cup B_{1}\right\}$ so that $<V(G)-\left\{A \cup B_{1} \cup B_{2}\right\}>$ has no isolates. Hence $\left\{A \cup B_{1} \cup B_{2}\right\}$ is a $\gamma_{c o t}-$ set of G. Let there exists a vertex v of minimum degree $\delta(G)$.

Now assume $E=\left\{e_{1}, e_{2}, e_{3}, \ldots . . e_{m}\right\}=E(G)$. Then $V[L(G)]=\left\{v_{1}, v_{2}, v_{3}, \ldots . v_{m}\right\}$ be the set of vertices corresponding to the set E. Suppose $D \subset V[L(G)]$ and if $\forall v_{i} \in D$ is adjacent to at least one vertex of $V[L(G)]-D$. Then D itself is a minimal dominating set of $L(G)$. If there exists a subset $D_{1} \subset D$ and $D_{2} \subset$ $V[L(G)]-D_{1}$ so that $D_{1}, D_{2} \neq \emptyset$ such that $<D_{1} \cup D_{2}>$ is connected. Then D is a $\gamma_{s d}-$ set of $L(G)$. Now with respect to $\left\{A \cup B_{1} \cup B_{2}\right\}$, we have $|D| \leq\left|\left\{A \cup B_{1} \cup B_{2}\right\}\right|+\delta(G)+1$, which gives $\gamma_{s d}[L(G)] \leq \gamma_{c o t}(G)+$ $\delta(G)+1$.

The following theorem shows relationship between $\gamma_{s}(G), \beta_{0}(G)$ and $\gamma_{s d}[L(G)]$.

2.11 Theorem: For any connected (p, q) graph G,

$$
\gamma_{s d}[L(G)] \leq \gamma_{s}(G)+\beta_{0}(G) .
$$

Proof:Let $A=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots v_{n}\right\} \subseteq V(G)$ if $N\left(v_{i}\right) \cap N\left(v_{j}\right)=\{u\}, 1 \leq i \leq n$ and $1 \leq j \leq n$. Then A is a maximal independent vertex set of G.Hence $|A|=\beta_{0}(G)$. Further consider a minimum set of vertices D_{1} such that $N\left[D_{1}\right]=V(G)$ and $\left\langle V-D_{1}\right\rangle$ is disconnected. It follows that D_{1} is a split dominating set of G. Otherwise there exists atleast one vertex $\{u\} \in V(G)-D_{1}$ such that $<V(G)-D_{1} \cup\{u\}>$ has more than one component. Hence $D_{1} \cup\{u\}$ forms a minimal $\gamma_{s}-$ set of G.

Suppose $B \subset V[L(G)]$ where $\forall v_{i} \in B$ are the edges of G which are incident to $\forall v_{j} \in A$. Now there exists a subset $B_{1} \subset B$ and if $N\left[B_{1}\right]=V[L(G)]$. Hence B_{1} is a dominating set of $L(G)$. Suppose there exists $B_{2} \subseteq B_{1}$ and $B_{3} \subset V[L(G)]-\left\{B_{1}\right\}$.If $<B_{2} \cup B_{3}>$ is connected, then B_{1} is a $\gamma_{s d}-$ set of $L(G)$. Hence $\left|B_{1}\right| \leq$ $\left|D_{1} \cup\{u\}\right|+|A|$ which gives $\gamma_{s d}[L(G)] \leq \gamma_{s}(G)+\beta_{0}(G)$

3. REFERENCES

[1]. Allan R.B and Laskar R, "On domination and independent domination numberof a graph", Discrete Mathematics, Vol-23, 1978, 73-76.
[2]. Cockayne E.J, Dawes R.M and Hedetniemi S.T, "Total domination in graphs", Networks, Vol-10, 1980, 211219.
[3]. Cocakyne E.J., Hartnell B.L., Hedetniemi S.T. and Laskar R, "Perfect domination in graphs", Journal of Combinatorics,Information\& System sciences, Vol-18(1993),136-148.
[4]. Harary F., "Graph theory", Adison-wesley, Reading mass, 1974.
[5]. Haynes T.W., Hedetniemi S.T. and Slater P.J., "Domination in graphs: Advanced topics", Marcel Decker, New York, 1998.
[6].Haynes T, Hedetniemi S.T. and Slater P.J., "Fundamentals of domination ingraphs", Marcel Decker, New York, 1998.
[7]. HedetniemiS.T.andLaskar R.C., "Connected domination in graphs", Graph theory and Combinatorics, Cambridge (Academic press), London 1948, 209-218.
[8]. JayaramS.R(1997), "Line domination in graphs", Graph Combinatorics357-363.
[9]. Kulli V.R, "Theory of domination in graphs", Viswa international publications, India-2010.
[10]. Mitchell S, Hedetniemi S.T., "Edge domination in trees", CongressusNumerantium 19(1977)489-509.
[11]. Muddebihal M.H and BaburaoGeetadevi, "Weak line domination in graph theory" International Journal of Research and analytical Reviews, Vol-6, 2019, 129-133.
[12]. Sampath Kumar E, PushpaLatha L, "Set-domination in graphs", Journal of graph theory/Vol-18, Aug-1994,Issue-5.

